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Steady shallow flow over curved beds 

By N. S. SIVAKUMARAN, T. TINGSANCHALI 
AND R. 3. H0sKING-f  

Asian Institute of Technology, Bangkok, Thailand 

(Received 29 September 1981 and in revised form 12 May 1982) 

The validity of recent shallow-flow equations with bed curvature is examined. 
Subcritical, critical and supercritical steady-flow solutions are identified, and the 
point of critical flow on the bed located, in terms of a generalized Proude number. 
Experiments on steady flow over both a symmetric and unsymmetric bed profile show 
that the theory satisfactorily predicts the free-surface and bed-pressure profiles over 
-2 5 K h  6 0.54 (where K is the bed curvature and h is the flow depth normal to the 
bed). 

1. Introduction 
Approximate nonlinear equations for shallow flow, generalizing the well-known 

Saint-Venant equations to  account for one-dimensional bed curvature, have been 
derived by Dressler (1978) using an asymptotic approach. We re-derived these 
equations more simply, and applied them to steady shallow flow over a high overflow 
spillway crest and a spillway toe (cf. Sivakumaran, Hosking & Tingsanchali 1981). 
Comparison with experiments by the US .  Army Engineers Waterways Experiment 
Station on a spillway crest (with vertical upstream face, without piers; cf. Chow 1959) 
demonstrated that the equations may be valid for quite large negative curvature 
(convex bed) ; but comparison with Henderson & Tierney’s (1963) data on a spillway 
toe shows that they are limited to smaller positive curvature (concave bed). In  $2 
the theoretical validity of the shallow-flow equations is discussed in terms of a 
generalized Froude number. In  $ 3 steady-flow solutions of the shallow-flow equations 
are considered ; subcritical, critical and supercritical solutions exist and the location 
of the critical flow is identified. Experimental verification of the shallow-flow 
equations for steady flow over both a symmetric and unsymmetric bed profile is 
described in $4. The theoretical and experimental results are compared in $5. 

2. Shallow-flow equations with bed curvature 
Shallow flow over a curved bed is illustrated in figure 1. The flow depth h(s, t )  normal 

to the bed and the flow velocity u o ( s , t )  a t  the bed may be estimated from the 
shallow-flow equations (Dressler 1978 ; Rivakumaran et al. 1981) : 

ah aq lduo  aE 
( l - K h ) - + - -  7 0, -- +--0, 

at as at as 

t Permanent address : University of Waikato, Hamilton, New Zealand. 
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FIGURE 1. Definition sketch 

where the flow per unit width q and energy head E arc 

q(s ,  t )  = -- UO In ( 1  - ~ h ) ,  (2.3) 
K 

and the velocity components and pressure are given by 

( 2 . 5 )  
UO u(s, n, t )  = - 

l-Kn' 

All other notation is the same as in Sivakumaran et al. (1981), viz K is the curvature 
of the bed, g the constant acceleration due to gravity, s and n the respective 
coordinates along and normal to the bed, and t the time; the height 5 above some 
datum defines the bed profile, the angle 0 measures bed slope, p h  is the constant 
atmospheric pressure (often set equal to  zero), and p is the fluid density. 
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FIGIJRE 2. Relative celerity c / ( g h  cos t9)i versus dimensionless curvature x. (The curve is 
imaginary for x > 0.6321 and has minimum 0.8776 at x = -50091.) 

For critical flow defined by ds/dt = 0, from the characteristics of (2.1) and (2.2) 
we have 

where x = K h .  Dressler (1978) defined the left-hand side as the local Froude number 
9, and identified the right-hand side as the local critical Froude number SC. 

Equation (2.8) can be rewritten in terms of the frce surface velocity component 

(2.9) 
u(s ,  h, t )  = uh (cf. ( 2 . 5 ) )  as 

lUhl = c, 

where 
(2.10) 

is the celerity (i.e. the speed of small disturbances at  the free surface) in curved bed 
$ow (cf. figure 1); as K + 0 (flat bed) the well-known result c = (gh cos8): is recovered 
(cf. Henderson 1966). Thus a t  critical flow any small disturbance a t  the free surface 
travels with the same fluid particles. One may preserve the definition of Froude 
number originally introduced for flow over flat beds ( K  = 0, cf. Henderson 1966), viz 
the ratio of free-surface speed to celerity 

5 = lu,l/c, (2.11) 

which is 1 for critical flow, irrespective of bed curvature (cf. (2.9)). We recall that 
the flow is subcritical if 5 < 1, and supercritical if 5 > 1. From (2.8) we note that 

F = (F/F$. (2.12) 

The celerity (2.10) is singular where 1 +In ( I  -x) = 0 or x = 1 x 06321, which 
defines an absolute upper bound for validity of the shaliow-flow equations. Dressler 
(1978) suggested the upper bound xu = 0.5, and the lower bound xe = -0.85, where 
the critical-Froude-number curve and the local-Froude-number curve for bed pressure 
below atmospheric intersect. Within (xL,  xu) any small disturbance a t  the free surface 
spreads faster over a concave bed ( K  > 0) but slower over a convex bed ( K  < 0) than 
over a flat bed ( K  = 0) (cf. figure 2). 
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FIGURE 3. Solution of y (x )  = A +  B x :  x * ,  subcritical; x:, critical; x$, supercritical. 

3. Steady-flow solutions 
The basic steady-flow equation (cf. Sivakumaran et al. 1981, equation (3 .3 ) )  is 

q2K2 
E = < + h c o s O + - [ ( l - K h )  In ( l - ~ h ) ] - ~ ;  (3 .1 )  

29 

which can be expressed when K + 0 as 

where (3 .2a ,  b )  

x = Kh, Y ( X )  [(l-x) h(i-X)]-2. (3 .2c,  d )  

The graphical solution of (3.1’) is sketched in figure 3. As proved in appendix A, 

the critical flow normally occurs a t  the point x defined by setting F = 1 in 

dE d 5  cos OdX q2K dK 
dx ax K dx 29 dx 

+ - ( 2 A + 3 B x ) -  = 0. -= ( l - x ) - + ( l - P - -  

(3.3) 

( 3 . 4 )  

(Equation (3 .4 )  is obtained by differentiating the basic steady-flow equation (3 .1 )  with 
respect to 2.) For symmetric bed profiles dc /dx  = dK/dx = 0 a t  the point of 
symmetry, so that (3.4) is trivially satisfied-i.e. critical flow occurs a t  the point of 
symmetry of the bed profile ; for non-symmetric convex profiles, the point of critical 
flow is displaced from the crest (see below). The pressure follows from ( 2 . 7 ) ,  given 
the solution of (3.1’) for the free surface. 

As described in $ 4 ,  we find that free-surface and bed-pressure profiles predicted 
by these shallow-flow equations coincide closely with experiment for a wide range 
of bed curvature ( - 2 5 x < 0.54) .  At this point we can demonstrate that  the familiar 
Saint-Venant equations (ignoring curvature) predict significantly different free-surface 
and bed-pressure profiles over this range. If h is the flow depth deduced from ( 3 . 1 ) ,  
and if we denote the depth predicted from Saint-Venant theory by h( 1 + ch) ,  then the 
zero-curvature equation replacing ( 3 . 1 )  is 
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Subtracting, we have that the dimensionless deviation ch satisfies the cubic 

(3.5) 

for typical values of the Froude number the magnitude of the root passing through 
the origin for zero curvature (x  = 0) becomes O(1) a t  quite-moderate curvature 
(1x1 5 0.5). The error in predicting the bed-pressure profile is also significant: in this 
case the Saint-Venant (hydrostatic) equation is p ,  = pgh( 1 + Eh) cos 8, so that 
subtracting from (2.7) for n = 0 we have the deviation 

where n(x) = (1 - ix) (1 - x) In (1 - x) [ 1 + In (1 - x)]-’ is also O( 1) for 1x1 5 0.5. 

4. Experimental set-up 
The experiments to test the equations were carried out in a 915 x 75 x 44.5 ern flume 

made of a steel frame with glass windows on both vertical sides (cf. figure 4). The 
bed of 1.5 cm thick plywood was elevated 10 cm above the base of the flume, to house 
the plastic tubes connecting the piezometer tappings along the centreline of the 
curved-bed model and the piezometers. The flume width was vertically partitioned 
along the entire channel length into two compartments, again using 1.5 cm plywood. 
The larger compartment was 30 ern wide, and served as the test channel for steady 
flow over two curved-bed models (see below). The bed-pressure piezometers were set 
up within the smaller compartment. The inflow to the inlet box through a 15.24 cm 
diameter cast-iron pipe was controlled by a gate valve. 

A 7.6 cm diameter orifice, placed well before the control valve in the inlet pipe, 
rated the inflow. Because of rapid oscillation of the mercury column in the U-tube 
manometer attached to both sides of this orifice, about 25 readings of the simultaneous 
mercury levels in both legs of the manometer were recorded at about 10 s intervals 
to estimate the mercury-level difference H (cm).f- The accuracy of the manometer 
scale was 0.1 em. From the orifice equation (cf. Streeter & Wylie 1975), the steady 
unit-width discharge q = 157.03H4 cm3 s-l cm-l (at 27 “C) was then determined. 

A portable trolley carrying a point gauge of accuracy 0-01 ern was placed on two 
rails fixed along the flume top. At a flat-bed section of the channel (say the section 
350 cm from the inlet box), the water depth D (cm) was measured using this point 
gauge to give the energy head E = D+q2/2gD2 (cm). The point gauge was also used 
to measure the water depth at  every 5 ern horizontal interval along the centreline 
of the curved-bed model. Although theory defines the free surface by the coordinate 
n normal to the bed, we measured the vertical coordinate x to locate the free surface. 
Vertical measurements are easier than measurements normal to the bed, which 
involve varying the inclination of the gauge from point to point ; and we can readily 
compute the corresponding depths normal t o  the bed (cf. appendix B). 

Along the centreline of the curved-bed model, 0.32 ern diameter copper piezometer 
tappings were fixed a t  5 cm horizontal intervals; these were connected by long plastic 

t Two small valves a t  either side of the orifice (one upstream and one downstream) were operated 
to remove trapped air in the pipeline, so that the amplitude of the oscillation was no more than 
5% of the measured head. 
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FIGURE 5 .  Reading the bed pressure. 

tubes of 0.64 cm internal diameter to vertical water piezometers (0.64 cm external 
diameter glass tubes) of reading accuracy to 0.1 cm. As depicted in figure 5, the 
recorded piezometric level difference between the steady flow and the dry-bed 
conditioni gave the gauge bed-pressure headpo/pg, where the implicit pressure datum 
taken corresponds to p ,  = 0. 

The shallow-flow equations were examined for steady flow over two curved-bed 
models, one a symmetric projile shaped after the normal distribution and the other 
an unsymmetric projile fashioned by B-splines (cf. appendix C).  The leading edge of 
each test section was placed 366 cm downstream from the inlet box. 

Potassium permanganate solution was injected from an overhead container 
through a 0.15 cm diameter nozzle a t  different points in the flow field, to  trace the 
flow pattern (cf. figure 6). The well-defined flow downstream is typical. 

We can anticipate that turbulent boundary-layer development does not signifi- 
cantly alter the flow depth. Following Bauer (1954), we have 

6 0-024 
s (s/k)O‘13’ 

where S is the boundary-layer thickness, s is the distance from the crest along the 
bed in the flow direction, and k is the roughness height. For our PVC curved-bed 
models, we have k x 0 2  mm, corresponding to the Manning roughness coefficient 
n = 0.01 (cf. Henderson 1966, pp. 98,99). If we also estimate that the boundary layer 
increases the flow depth by displacement thickness 0.16 this is no more than a few 
per cent. I n  passing we note that k x 0+3-1*5 mm, corresponding to Manning 
roughness coefficient n = 0.012-0-014 for a concrete surface of a prototype dam 
spillway. I n  this case the boundary-layer thickness could be up to 30 yo greater; but 
of course the flow depth may be very much deeper, so that the effect would be less 
significant. 

- =--- 

t The procedure followed to get the ‘dry-bed’ reading was to close the flume valves and add 
water to the level of the model crest, then remove any trapped air in each manometer, before slowly 
draining to a level just covering each manometer opening in turn. 

16 F L M  128 
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(b )  

FIGURE 6. (a) Steady flow over the symmetric profile for q = 11 19.7 em3 s-l em-' and E = 348 em. 
( b )  Steady flow over the unsymmetric profile for q = 11165 em3 s-l em-' and E = 447 cm. 
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5. Results 
Figures 7 (u, b )  show experimental points and theoretical curves for the free surface 

and bed pressure for flow over the symmetric profile, for a high and a low flow 
respectively. (Similar curves were obtained for other intermediate flows - 
cf. Sivakumaran (1981)). Note that the complete theoretical bed-pressure profiles are 
symmetric about the crest point x = 0; as appropriate, subcritical and supercritical 
pressure profiles are selected for upstream and downstream respectively. Agreement 
is excellent, although for larger q the theoretical free surface is slightly below the 
experimental points in the subcritical region ; the inadequacy of the shallow-flow 
approximation where the flow is deep probably accounts for this. Critical flow occurs 
exactly a t  the crest, as predicted by (3.4)-see also figure 8, which is primarily 
intended t o  show the close agreement between theoretical and observed local Froude 
number (cf. also Dressler 1978). Nearthe crest in the subcriticalregiontheexperimental 
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FIGURE 7 .  (a) Steady flow over the symmetric profile for q = 1 1 1 9 7  cm3 s-l cm-' and E = 34.8 cm 
(highflow). (b )  Steady flow over the symmetric profile for q = 3599 cm3 s-l cm-' and E = 27.2 cm 
(lowflow). Theory: -, subcritical; ----, critical ; ----, supercritical. Experiment: 0. 

paints fall below the theoretical free surface of subcritical flow as the flow accelerates 
in a transition region from sub- to supercritical flow. For low flow, no solution of (3.1') 
exists near the transition point - cf. the discontinuity a t  the crest in figure 7 ( b ) .  

The large change of velocity gradient in the transition region implies that  the basic 
assumptions of the approximate shallow-flow equations examined (viz grossly 
irrotational inviscid $ow) are questionable there. However, we may continue to 
characterize the transition by rewriting (3.4) as 

and noting that we are interested in the neighbourhood of the singular point where 
= 0, viz (0, z 0, xo) when d K / d $  z 0. For small curvature variation the nature = 
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FIGURE 8. Theoretical and experimental local Froude number versus 
dimensionless curvature for the symmetric profile. 

of the transition profile can therefore be inferred from the linearized autonomous 
system (cf. also the transition-profile discussion of Escoffier 1958; Chow 1959) : 

[In (1 -xo )+ i l2+% > O. where the function m2( 1 - xo)  = 3 
“1 - x o )  In (1  -x0)l4 

The corresponding integral curves are 

q2K3 
8 2 + - r n 2 ( ~ - ~ 0 ) 2  = constant, 

9 

i.e. hyperbolae for a convex bed ( K  < 0), defining a saddle. Owing to dissipation 
(dE/ds  =I= 0). the actual surface profile departs from its upstream ideal integral curve, 
to pass through the critical point before merging with its downstream curve opposite. 
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4! E Xmin Xmax 

(em3 s-l cm-l) (cm) Experiment Theory J: (cm) Experiment Theory x (em) 

11  197 348 -0380 -0.385 -5 0427 0417 - 55 
10144 34.0 -0.360 -0.370 - 5  0.41 3 0407 - 55 
7703 31.7 -0.304 -0'310 -5 0381 0377 - 55 
561.0 296 -0.253 -0.256 -10 0355 0352 - 50 
359.9 27.2 -0201 -0.201 - 10 0328 0326 - 50 

TABLE 1. Extreme X-values and their location (symmetric profile) 

0 0. -3.0 -2.5 -2.0 -1 .5  -1.0 -0.5 
- x  
321 

FIGURE 9. Variation of error ratio ( A P J P , ) / ( A K / K )  versus x (the uncertainty relation (5.3)). 

The integral curve for the high flow in figure 7 ( a )  is shown entirely; but for the low 
flow of figure 7 ( b ) ,  in the neighbourhood of the singular point, i t  is a hyperbola cutting 
the critical curve, and we have chosen not to continue through the cut. 

Table 1 summarizes extreme X-values and their location, for flows (various q and 
E )  for which the symmetric profile was tested; and all values fall within the range 
suggested by Dressler (1978) : 

-0.85 < ~h < 0.5. (5.1) 

The total bed pressure is accurately predicted, particularly upstream where the 
centrifugal pressure is small. It is clear that measuring bed pressure p ,  disturbs the 
bed curvature. We can show from (2.7) on eliminating uo using ( 2 . 3 )  that the 
centrifugal bed pressure 
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FIGURE lO(a) .  For caption see p. 482. 

can be affected by bed curvature error. Considering the logarithmic partial differen- 
tiation of (5 .2)  with respect to  K ,  we get the error ratio 

where Ape is the error (uncertainty) in the measured centrifugal pressure due to an 
error (uncertainty) AK in the bed curvature (cf. figure 9). Local curvature error and 
resulting turbulence (e.g. due to the flat-end piezometer tappings) may account for 
the systematic error pattern in the measured bed-pressure profiles in the downstream 
supercritical region (cf. also the discussion below). 

I n  the symmetric profile, the experimental X-values fell within the range suggested 
by Dressler - i.e. (5.1). To test the validity of this range an unsymmetric bed profile, 
skewed upstream, was designed using a B-splined shape (cf. appendix C). Figures 
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FIGURE 10. (a)Steadyflow over theunsymmetricprofileforq = 11 16.5 cm3 s-l cm-landE = 447 cm 
(high flow). ( b )  Steady flow over the unsymmetric profile for q = 3750 om3 s-l cm-I and 
E = 37.8 cm (low flow). Theory: -, subcritical; ----, critical; ----,  supercritical. Experiment 0. 
H. domains where n 2 045321/~. C,  D, intervals where bed pressure cannot be predicted. 

9 E Xmm XIIlax 

(em3 8-l cm-l) (em) Experiment Theory s (cm) Experiment Theory s (cm) 

11 16.5 44.7 -3%08 -33.020 40 0543 0543 5 
905.3 42.9 -3.236 -2.445 45 0.526 0.527 5 
745.8 41.6 -2.070 -2.260 45 0.52 1 0523 5 
375.0 37.8 - 1,608 - 1.692 40 0.502 0.506 5 

TABLE 2 .  Extreme X-values and their location (unsymmetric profile) 
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FIGURE 1 1 .  Theoretical versus experimental x for the symmetric profile. The error xexp-xth 
has mean 00013 and standard deviation 00023. 

10(a, b)  show the experimental and theoretical free surface and bed pressure for a 
high and low flow. (Similar curves were obtained for other intermediate flows- 
cf. Sivakumaran ( 1981).) Again, the theoretical bed-pressure profiles are not continued 
through the crest, and, as in the case of the symmetric profile, subcritical and 
supercritical pressure profiles are selected for upstream and downstream respectively. 
The transition zone in which the flow changes from sub- to  supercritical is more 
extensive in this case, and apparently the critical flow does not occur at the crest 
but slightly downstream as expected (cf. (3.4)). Table 2 gives the extreme X-values 
and their location - note that in this case x is measured from the leading edge of the 
profile. The extremes are outside Dressler's suggested range (5. l ) ,  especially for 
negative x. 

Bed pressure cannot be predicted for certain x-intervals (e.g. intervals C and D 
for q = 11165 em3 s-I cm-l (cf. figure 10a) because the X-values are outside the 
theoretical limit, viz x = 0.6321. The shaded areas in figures lO(a, h) indicate the 
domains where no theoretical solution exists. For larger q ,  the free-surface prediction 
is not unique for certain x near the origin. For instance, when q = 1 1  16.5 em3 s-l em-' 
(cf. figure 10a) the bed normals for 2 between the intervals C and D give the free 
surface marked by A ,  and for x beyond the interval D they give B.  Let us  call this 
phenomenon normal-crossing - since i t  corresponds to bed normals crossing each 
other. If normal-crossing occurs within the flow then the bed normals between the 
respective crossing normals appear redundant for free-surface prediction but 
necessary for bed pressure. If the domain of no solution (x >, 0.6321) does not exist 
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within normal-crossing, then these bed normals give a third free-surface prediction ! 
Dressler’s (1978) non-zero-Jacobian condition a t  the free surface, i.e. 

seems insufficient for uniqueness of the predicted free surface. 
There is no continuous prediction of either free surface or bed pressure across the 

transition point (cf. figures 10a, b) .  Apart from curvature error introduced by the 
piezometer tappings, other model-fabrication curvature errors probably account for 
larger systematic errors in the observed bed pressure downstream (cf. also Siva- 
kumaran et al. 1981). (Matched B-splines give a class-2 curve-i.e. continuous together 
with its first two derivatives - therefore K is continuous everywhere but dK/dx is not; 
the discontinuity in dK/dx causes kinks in the theoretical bed pressure.) 

The theoretical x = Kh values are plotted against the experimental X-values in 
figures 11 and 12 for the symmetric and the unsymmetric profiles respectively. There 
is good agreement for -2 5 Kh < 0.54, beyond Dressler’s recommended range of 
validity (5.1) for his equations. 

6. Conclusions 
The shallow-flow equations with bed curvature are easy to use to predict free 

surface and bed pressure (hydrostatic + centrifugal) satisfactorily for irrotational 
steady flow when frictional effects are negligible. The equations are valid for convex 
beds of larger curvature than is the case for concave beds ; the range - 2 5 Kh < 0.54 
shows good agreement between theory and experiment (cf. Dressler’s suggested range 

The location of the critical flow can be accurately predicted. I n  supercritical flow 
any error in the bed curvature affects the bed pressure considerably. Near the singular 
point (i.e. transition point), the basic assumptions of the approximate shallow-flow 
equations examined are questionable. 

- 0 8 5  < Kh < 0.5). 

Appendix A. Fundamental lemma 
Theorem : 

To prove this we recall Dressler’s (1978) definitions of local Froude number 9 and 
local critical Froude number FC (cf. (2.8)); using (2.3) to eliminate u, 

or 

Comparing with (3.2) and denoting d/dX by a prime, we get 
> 

> < B 5 FC- -Bx = - ~ ‘ ( x ) x .  
Therefore when 
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/ 0 / .  I 

-3.0 t 
FICURE 12. Theoretical versus experimental x for the unsymmetric profile. The error xexp -xth 

has mean 00265 and standard deviation 00599. 

Appendix B. Theoretical and experimental x 
As shown in figure 13, at point XI the vertical depth D, on the point gauge gives 

the experimental free-surface coordinates (X, ,  2, = 6, +Dl) , t  and we compute the 
theoretical free-surface location (x,, 2, )  on the same bed normal through (XI, 2,) as 
follows. 

Given the bed profile c(z), the solution of 

(a prime denotes d / d x )  is the base location (x2 ,  c2 = [(z2)) of this bed normal, and 
a t  this point 

the experimental flow depth and x are given by 

tan 8, = y'(x,), K~ = s(x2) C O S ~  02; (B 21, (B 3) 

H2 = [(x,-~2)2+(z1-62)21~, X e x p  = G H 2 .  (B 41, (B 51 

The theoretical x is the solution of (3.1'); i.e. 

Y(X) = A2 + B2 x, (B 6) 

t Capital letters denote the experimental values, the lower-case letters the theoretical values. 
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FIGURE 13. Theoretical and experimental flow depths. 

where from (3.2) A ,  = 2g(E--5,)/(q~(,)~ and B, = -2g C O S O , / ~ ~ K ~ .  The theoretical 
flow depth is 

hence the theoretical location of the free surface is given by 

(B 7) 

(B 8) 

h2 = X t t l I K 2 ;  

x1 = x2 - h, sin O,, z1 = -5, + h, cos 8,. 

Newton-Raphson iteration was used to  solve (B 1) for the base location (x,, C,), and 
(B 6) for x. 

Appendix C. Geometry of curved-bed profiles 

The symmetric profile of length 120 cm is described by the normal distribution 

(a)  Symmetric projile 

[ = 20 exp [ -a ( & x ) ~ ]  (cm). (C 1) 

(b)  Unsymmetric profile 

The unsymmetric profile of length L = 150 cm is designed using B-splines (De Boor 
1978; Loganantharaj 1981) as follows. 

Let If be 2-intervals X i  < x < Xi+l, and let = (Xi, yi) be vertices, where 
i = 0, I ,  .... m- 1, V, E ( 0 , O )  and V, = (L,O). I n  terms of parameter h ~ ( 0 , l )  in Ji, 
a point ([(A),g(h)) on the spline curve is given by 

where 7 t when V + X, and 7 t 6 when V t Y. Artificial vertices 

Vv1 = 2&- v,, V,,, = 2 v . -  vm-, (C 3) 
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i 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

xi (cm) 
0 
9225681 

31.01 1056 
40.140 415 
45,675 620 
48.524 623 
53.408 628 
71.438 746 
88980463 

107.890720 
141.578 144 
150 

TABLE 3 

yi (cm) 
0 

- 0.109 890 
3.846 153 

12-3 18 963 
20.524091 
26.700479 
32.155 536 
26.294730 
11.732882 
2.787 639 
0.008 453 
0 

are defined so that the curve has zero curvature a t  the end points V, and V,. The 
entire curve from V, to V, is of class-2, i.e. the curve i s  continuous together with its.first 
two derivatives (so that slope 8 and curvature K ,  but not necessarily d#/dx ,  are 
continuous). At a given abscissa x, to find the slope tan 8 = dc/d% and the curvature 
k = (d21Jdt2) C O S ~  8, we solve 

[ ( A ) - x  = 0 (C 4) 

for A (using Newton-Raphson iteration) to find t’, g ,  and 6’’ (where a prime denotes 
d / d A ) ,  so that 

For the unsymmetric profile we take m = 11 and the vertices given in table 3. 
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